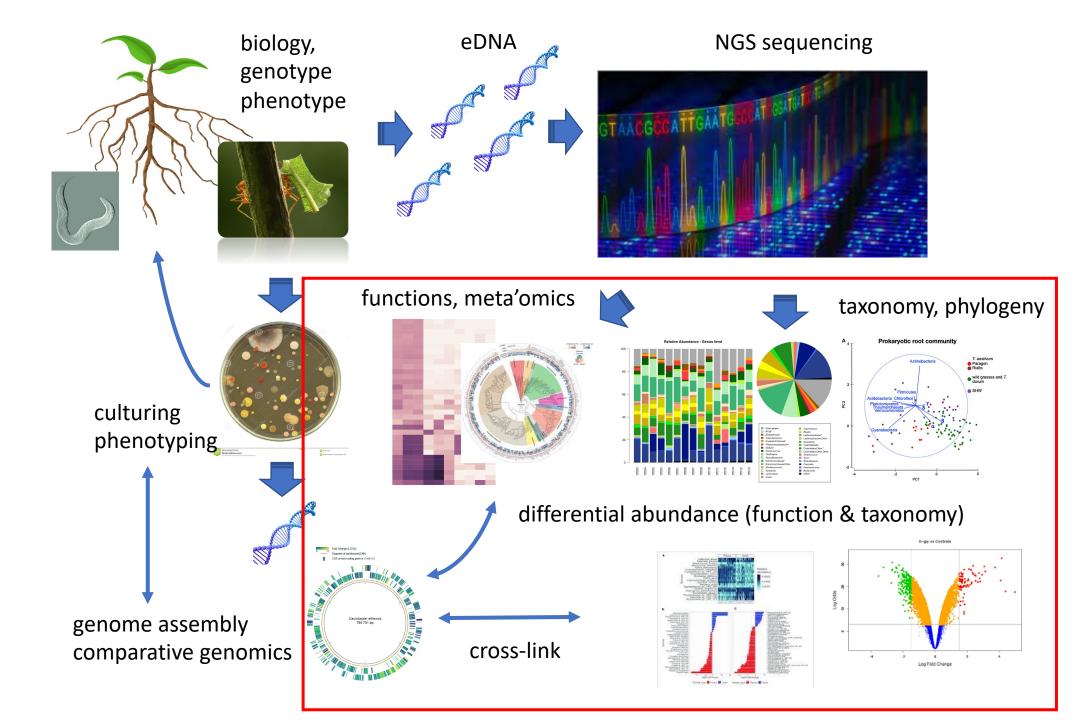

Meta(genomics)



v.j.carrion.bravo@biology.leidenuniv.nl

THREE MAIN QUESTIONS FOR MICROBIOME RESEARCH

<u>What</u> are they doing? <u>How</u> are they doing it?

Metagenomics, Metatranscriptomics all omics

SHOTGUN SEQUENCING (METAGENOMICS)

Starting fragments:

ATCAGTA TAGCTTGCA Reconstruct based on overlapping regions with assembler scaffold contig 1 contig 2 CAGTATAGC ATCAGTA TAGCTTGCA AGTATCA CAGTCAG Aligned sequence ATCAGTATCAGTCAGTATAGCTTGCA

Randomly break up the DNA, sequence all of the fragments to study potential gene function and assemble genomes/partial genomes in addition to taxonomy

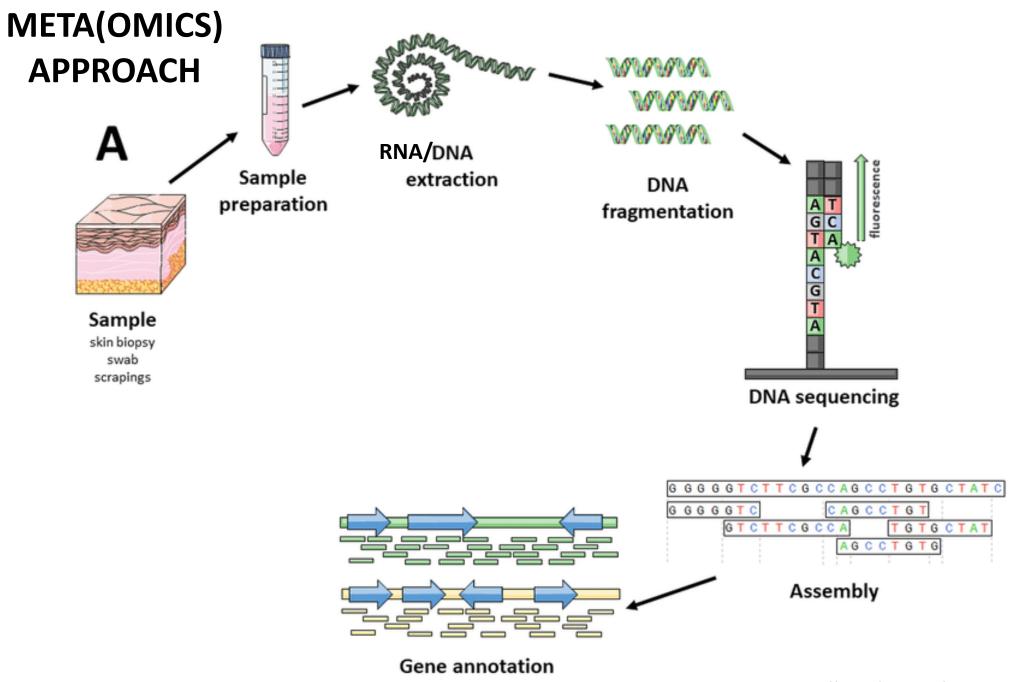
DEFINITIONS

Metagenomics is the study of microbial communities in their original living places. Metagenome sequencing refers to sequencing the entire genomes of all microbes present in a sample in order to explore taxonomic, functional, and evolutionary aspects

Metatranscriptomics informs us of the genes that are expressed by the community as a whole. With the use of functional annotations of expressed genes, it is possible to infer the functional profile of a community under specific conditions, which are usually dependent on the status of the host.

Metabolomics is the comprehensive analysis by which all metabolites of a sample (small molecules released by the organism into the immediate environment) are identified and quantified.

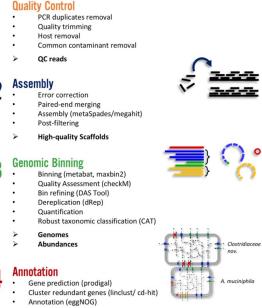
Metaproteomics is the large-scale identification and quantification of proteins from microbial communities and thus provides direct insight into the phenotypes of microorganisms on the molecular level.


Unculturable Ecology Natural state Health

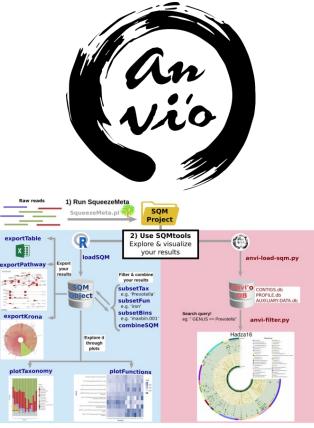
PITFALLS AND TROUBLESHOOTING

What can affect results of your communities?

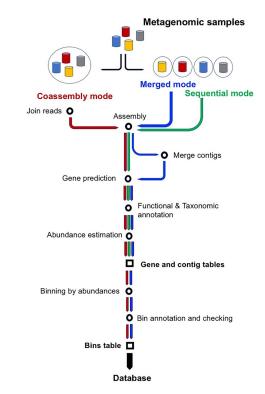
Sampling method Experimental design Sequencing strategy Workflows Analysis


Tip: pilot experiments, consult bioinformatics experts

Godlewska et al., 2020


WORKFLOWS ...

metagenome-atlas/ genecatalog_atlas


> Comparable gene catalog

https://github.com/metagenome-atlas/atlas

https://merenlab.org/software/anvio/

SqueezeMeta

https://github.com/jtamames/SqueezeMeta

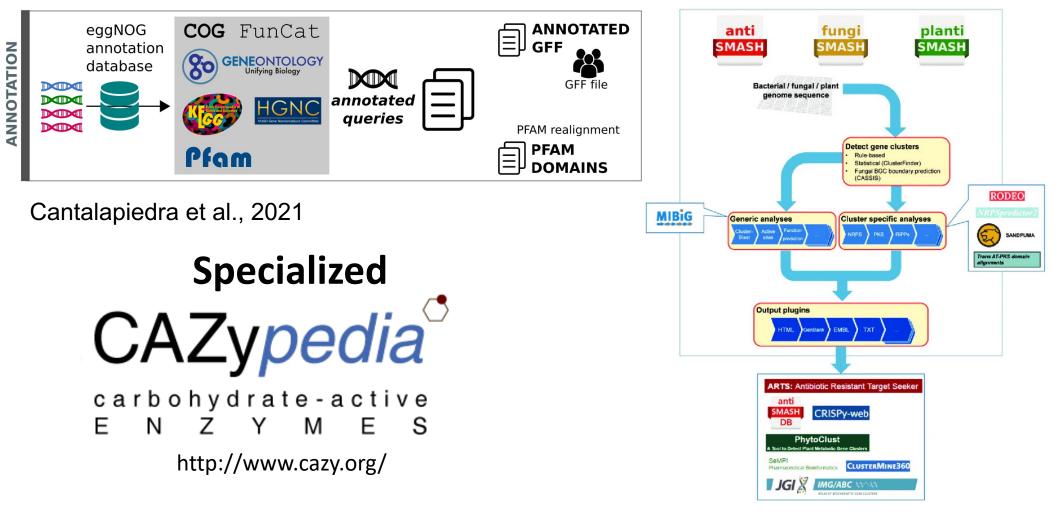
Many more!!!

Types of normalization methods

- 1. Rarefaction
- 2. Total Sum Scaling (TSS)
- 3. Relative Abundance
- 4. Counts per Million (CPM)

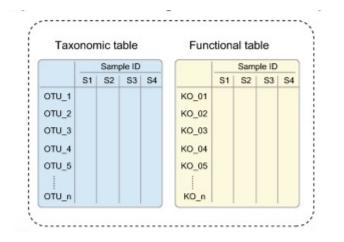
5. RPKM/FPKM/TPM

- 6. Cumulative Sum Scaling (CSS)
- 7. DESeq2 / EdgeR Normalization
- 8. Variance Stabilizing Transformation (VST)
- 9. Log and CLR Transformations


Nature Reviews Microbiology 16, 410–422 (2018) Cite this article

CPM, RPKM, FPKM & TPM

- CPM: Counts per million, adjusts for sequencing depth.
- RPKM/FPKM: Normalizes gene length and sequencing depth.
- TPM: Similar to RPKM but corrects for transcript length biases.


TAXONOMIC AND FUNCTIONAL ANNOTATION

General

Medema group

α AND β DIVERSITY IN META(OMICS)

Liu et al., 2020

CAN WE RECONSTRUCT GENOMES FROM METAGENOMES?

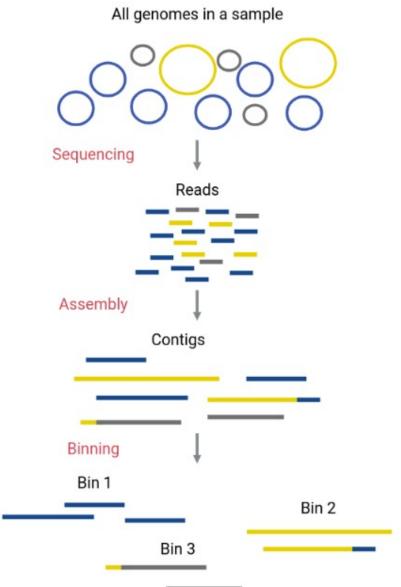
Binning. in metagenomics, binning is the process of grouping reads or contigs and assigning them to individual genome.

Supervised approach

- relies on known reference genomes
- uses homology or sequence composition similarity for binning

Unsupervised approach

- does not need a reference genome
- relies on sequence composition and/or species abundance for binning


All genomes in a sample Sequencing Reads Assembly Contigs Binning Bin 1 Bin 2 Bin 3

https://academic.oup.com/bib/article/13/6/669/193900?login=false

CAN WE RECONSTRUCT GENOMES FROM METAGENOMES?

Binning. in metagenomics, binning is the process of grouping reads or contigs and assigning them to individual genome.

- Mapping statistics
 - ✓ Read coverage
- Composition
 - ✓ Kmer frequency (tetranucleotides)
 - ✓ %GC content
 - ✓ Codon usage
- Other
 - ✓ Taxonomic assignment

What is K-mer frequency?

- A K-mer is a sequence of length k in a genome.
- Example: 4-mers (tetranucleotides) → AAAA, AAAC, AAGT, etc.
- The frequency of K-mers provides a genomic signature useful for classification.
- Taxonomic classification, genome binning, and HGT detection

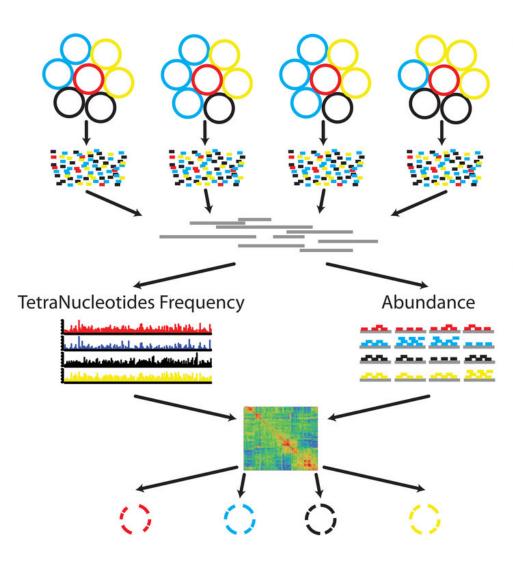
https://www.sciencedirect.com/science/article/pii/S2001037024001703

Genome Assembly	In <i>de novo</i> genome assembly, sequencing reads undergo fragmentation into k-mers, and their overlaps are employed to assemble longer contiguous sequences. This process commonly utilizes k-mers to build De Bruijn graphs or implements overlap-layout- consensus methods.	Allpaths-LG[239], Bifrost [240], Canu[241], Cortex [242], ELBA[243], KAT[223] MEGAHIT[244], Merqury [46], QUAST-LG[245], SKES [246], SPAdes[75], TandemQUAST[247], TandemMapper[248]		
Sequence	Alignment-free methods are	BBMap[250], Bowtie2[251,		
Comparison	increasingly used for DNA	252], BWA[253-255], iMOk	A	
comparison	and protein sequence	[256], MiniMap2[71]		
	comparison since they are	(),		
	much faster than traditional alignment-based approaches. Most alignment-free algorithms		Protein Sequence Searching and Alignment	Sequence match is determined by aligning translated DNA sequences to a reference protein
	are based on the word or k- mer composition of the sequences under study. [249]			database.
Taxonomic	In sequence composition-	ARK[259], BinDash[122],		
Classification	based methods, the	Bracken[260], CDKAM[261]		
	frequency and distribution	CLARK[262], Dashing[124],		
	of k-mers in metagenomic	fmh-funprofiler[128],		
	data are analyzed to assess genome similarity across	Genometa[263], Kaiju[138], KMCP[264], KmerFinder	,	
	various taxonomic ranks.	[265], Kraken2[136],		
	[257,258]	KrakenUniq[19], LMAT[266	1.	
		Mash[72], Mash Screen[34]		
		Matchtigs[267], MetaCache		
		[268], MetaPalette[269],		
		MetaProFi[50], NIQKI[126],		
		SEK[270], StrainSeeker[271	,	

SuperSampler[127], TACOA

https://www.sciencedirect.com/science/article/pii/S2001037024001703

BLAT[65], BLAST[68], BLASTX[64,282], DIAMOND [283], MMSeqs2[284], PAUDA[285], RAPSearch2 [286], USEARCH & UBLAST [287]


Codon usage in bacteria

- Codon usage refers to the preference of certain codons over others for the same amino acid.
- It varies among bacterial species due to factors like tRNA availability, GC content, gene expression levels, and evolutionary adaptations.
- Example: Leucine has six codons (UUA, UUG, CUU, CUC, CUA, CUG).
- Different bacteria prefer specific codons.

Examples of codon usage in bacteria

- *E. coli*: moderate GC content codons (e.g., CGU for arginine).
- *Bacillus subtilis*: Low GC content preference (e.g., AAA for lysine).
- *Pseudomonas aeruginosa*: High GC content preference (e.g., CUG for leucine).

BINNING METHODS: EXAMPLE METABAT

Preprocessing

Samples from multiple sites or times

- ² Metagenome libraries
- Initial de-novo assembly using the combined library

MetaBAT

Calculate TNF for each contig

Calculate Abundance per library for each contig

Calculate the pairwise distance matrix using pre-trained probabilistic models

Forming genome bins iteratively

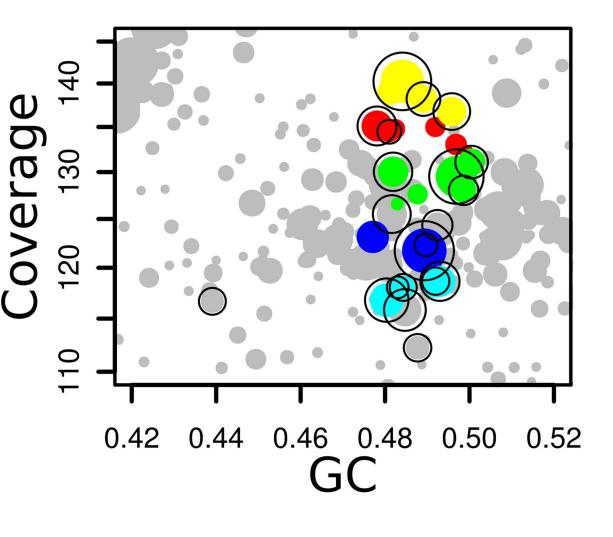
Kang DD et al., PeerJ (2015)

Genome binner	Parameters	Model	Version to validate	Publication	Last update	Resources		
Max8in	k mer frequencies, coverage, single- copy genes	Expectation-maximization, bin number estimated from single-copy marker gene analysis	226	2014	2019	https://sourceforge.net/ projects/maxbin		
MetaBat	4-mer frequencies, coverage	Modified K-medoids algorithm	182.13	2015	2020	https://bitbucket.org/ berkeleylab/metabat/src/ master		
Groopm	coverage, contig's length, tetranucleotide frequency	Two way clustering, Hough partitioning, self-organizing map	2	2014	2017	https://github.com/ timbalam/GroopM		
CONCOCT	k mer frequencies, coverage	Gaussian mixture models, bin number determined by variable Bayesian	1.0.0	2014	2019	https://github.com/ BinPro/CONCOCT		
MyCC	k-mer frequencies, coverage (optional), universal single-copy genes	Affinity propagation	1	2016	2017	https://sourceforge.net/ projects/sb2nhri		
MetaWatt	tetranucleotide frequency, coverage	Firstly clustering by empirical relationship of the average standard deviation at tetranucleotide frequency mean, then employing interpolated Markov models	353	2012	2016	https://sourceforge.net/ projects/metawatt		
BMC3C	frequency variation of oligonucleotides, coverage, codon usage	Ensemble k-means, construct a weigh graph and partition it by Normalized cuts [49, 50]	X	2018	2018	http://mida.swu.edu.cn/ codes.php?name = BMC3C		
Binsanity	coverage, tetranucleotide frequency, percent GC content	Affinity propagation	0.2.8	2017	2020	https://github.com/ edgraham/BinSanity		
Autometa	sequence homology, single-copy genes, 5-mer frequency, coverage, single- copy genes	Lowest common ancestor analysis, DBSCAN algorithm, supervised decision tree classifier recruite unclustered contigs	X	2019	2020	https://bitbucket.org/ jason_c_kwar/autometa/ src/master		
COCACOLA	k-mer frequency, coverage, co-alignment, paired-end read linkage	K-means based on L1 distance, non-negative matrix factorization with sparse regularization, hierarchical clustering	X	2017	2017	https://github.com/ younglululu/COCACOLA		
SolidBin- naive	single-copy mark genes, tetranucleotide frequencies, coverage, pairwise constraints	Semi-supervised spectral Normalized cut	u	2019	2020	https://github.com/ sufforest/SolidBin		
Vamb	tetranucleotide frequencies, coverage	Variational autoencoders, iterative medoid clustering algorithm	20.1	2018	2020	https://github.com/ RasmussenLab/vamb		
DAS Tool	original binner output bin sets	Refine bins according shared contigs between two original binner results	1.1.1	2018	2019	https://github.com/cmks/ DAS_Tool		
MetaWrap	original binner output bin sets	Separating every pair of contigs in different bins, selecting the best bin sets according completion and contamination	122	2018	2019	https://github.com/bxlab/ metaWRAP		
Binning_ refiner	original binner output bin sets,	Scoring bins based on single-copy genes and	1.4.0	2017	2019	https://github.com/ songweizhi/Binning		

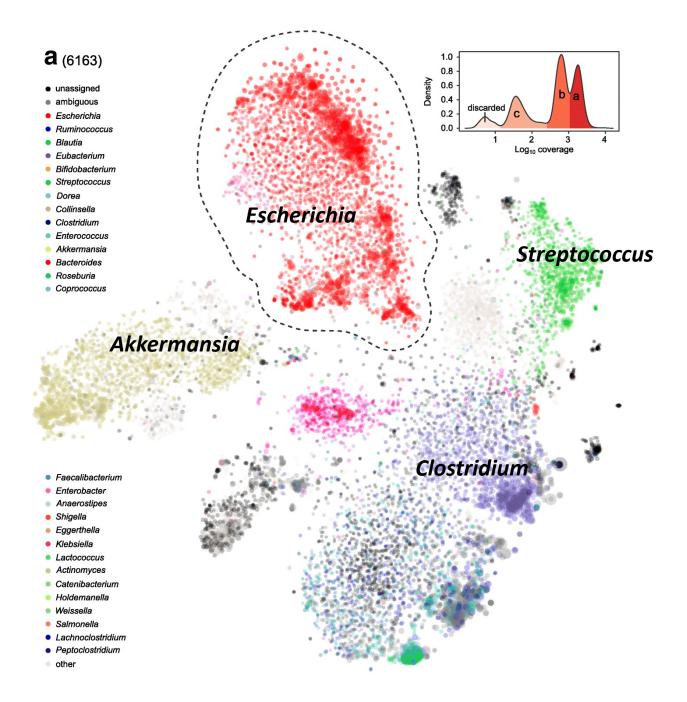
refiner

output bin sets,

single copy genes

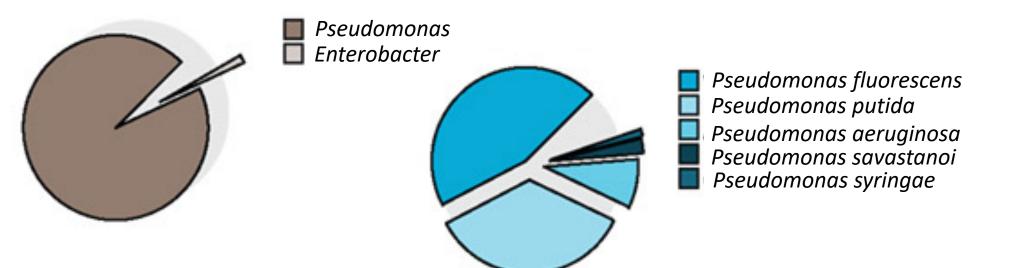

single-copy genes and picking up high-score bins iteratively

Yue et al., 2020


songweizhi/Binning_

refiner

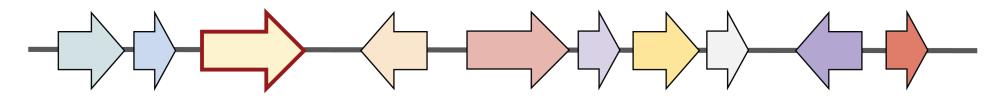
Table 1 Summary of twelve original genome binner and three refinning genome binner



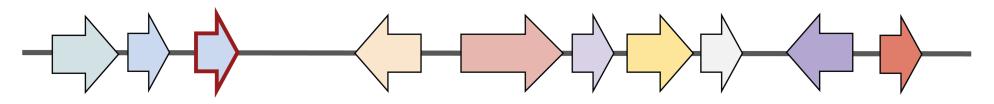
Kang et al., 2016

Qiyun Zhu et al., 2018

WHAT CAN GO WRONG?


Modified from Strous et al., 2012

L													
Bin Id	Marker lineage	# genomes	# markers	# marker sets	0	1	2	3	4	5+	Completeness	Contamination	Strain heterogeneity
res.005	N/A (0)	-1	43	1	0	43	0	0	0	0	100.00	0.00	80.00
res.004	N/A (0)	-1	43	1	0	43	0	0	0	0	100.00	0.00	50.00
res.002	N/A (0)	-1	43	1	Θ	43	0	0	0	0	100.00	0.00	0.00
res.001	N/A (0)	-1	43	1	Θ	43	0	0	0	0	100.00	0.00	0.00
res.003	N/A (0)	-1	43	1	1	42	0	0	0	0	97.67	0.00	0.00
res.014	N/A (0)	-1	43	1	7	19	9	8	0	0	83.72	58.14	4.69
res.012	N/A (0)	-1	43	1	8	19	16	0	0	0	81.40	37.21	4.17
res.007	N/A (0)	-1	43	1	8	35	0	0	0	0	81.40	0.00	33.33
res.009	N/A (0)	-1	43	1	10	21	12	0	0	0	76.74	27.91	0.00
res.008	N/A (0)	-1	43	1	11	32	Θ	0	0	0	74.42	0.00	0.00
res.011	N/A (0)	-1	43	1	19	24	0	0	0	0	55.81	0.00	25.00
res.013	N/A (0)	-1	43	1	23	18	2	0	0	0	46.51	4.65	0.00
res.010	N/A (0)	-1	43	1	37	6	0	0	0	0	13.95	0.00	0.00
res.006	N/A (0)	-1	43	1	43	0	0	0	0	0	0.00	0.00	0.00


QUALITY ASSESSMENT: CheckM

Uses a set of lineage-specific single-copy marker genes (SCMG) - genes that are present in nearly every genome within a lineage and are single copy.

Reference SCMG set

New genome assembly to evaluate

Completeness: 90% (9 out of 10 genes are present) **Contamination:** 10% (1 gene occurs twice)

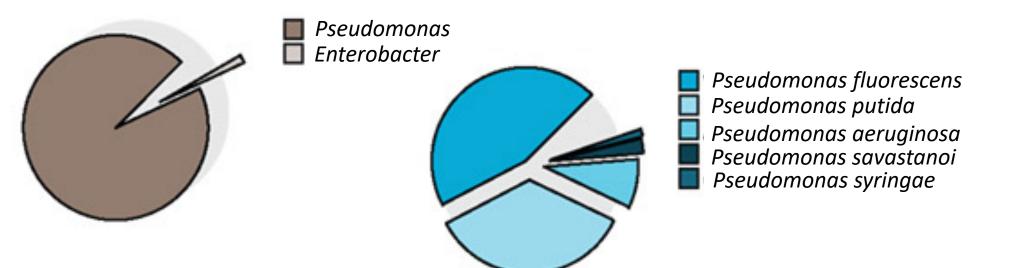
Parks DH et al., Genome Res. (2015)

QUALITY ASSESSMENT: CheckM

Strain heterogeneity: indicates the source of contamination (other strains of the same species vs more distant taxa)

Completeness: 85% Contamination: 15% Strain heterogeneity: 100%

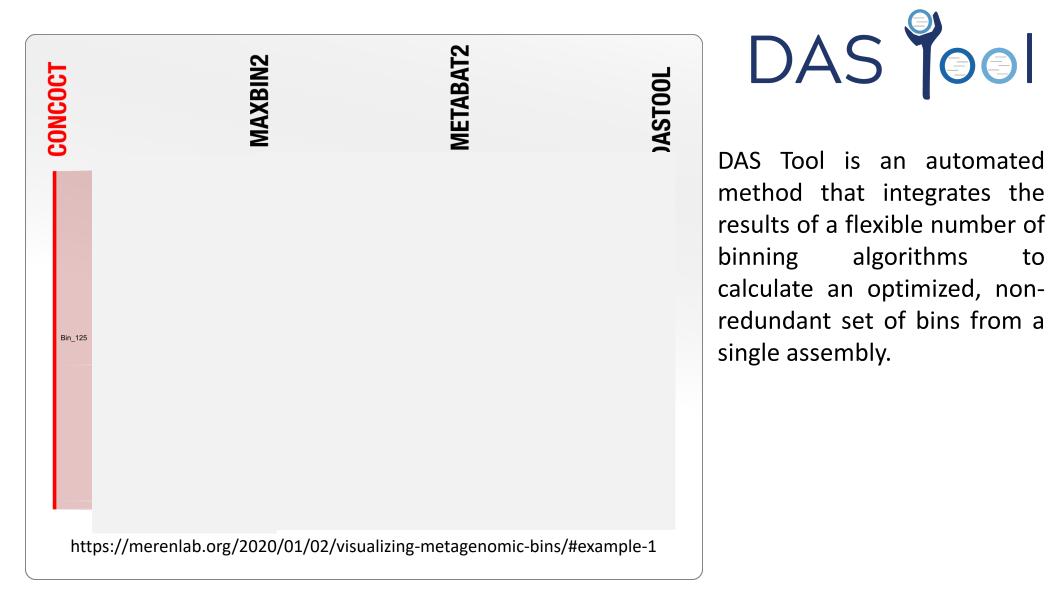
all contamination is likely to be from other strains of the same species


Completeness: 85% Contamination: 15% Strain heterogeneity: 0%

all contamination is likely to be from different species

Tools to remove contamination:

GUNC (https://grp-bork.embl-community.io/gunc/) **MAGpurify** (https://github.com/snayfach/MAGpurify)


WHAT CAN GO WRONG?

Modified from Strous et al., 2012

L													
Bin Id	Marker lineage	# genomes	# markers	# marker sets	0	1	2	3	4	5+	Completeness	Contamination	Strain heterogeneity
res.005	N/A (0)	-1	43	1	0	43	0	0	0	0	100.00	0.00	80.00
res.004	N/A (0)	-1	43	1	0	43	0	0	0	0	100.00	0.00	50.00
res.002	N/A (0)	-1	43	1	Θ	43	0	0	0	0	100.00	0.00	0.00
res.001	N/A (0)	-1	43	1	Θ	43	0	0	0	0	100.00	0.00	0.00
res.003	N/A (0)	-1	43	1	1	42	0	0	0	0	97.67	0.00	0.00
res.014	N/A (0)	-1	43	1	7	19	9	8	0	0	83.72	58.14	4.69
res.012	N/A (0)	-1	43	1	8	19	16	0	0	0	81.40	37.21	4.17
res.007	N/A (0)	-1	43	1	8	35	0	0	0	0	81.40	0.00	33.33
res.009	N/A (0)	-1	43	1	10	21	12	0	0	0	76.74	27.91	0.00
res.008	N/A (0)	-1	43	1	11	32	Θ	0	0	0	74.42	0.00	0.00
res.011	N/A (0)	-1	43	1	19	24	0	0	0	0	55.81	0.00	25.00
res.013	N/A (0)	-1	43	1	23	18	2	0	0	0	46.51	4.65	0.00
res.010	N/A (0)	-1	43	1	37	6	0	0	0	0	13.95	0.00	0.00
res.006	N/A (0)	-1	43	1	43	0	0	0	0	0	0.00	0.00	0.00

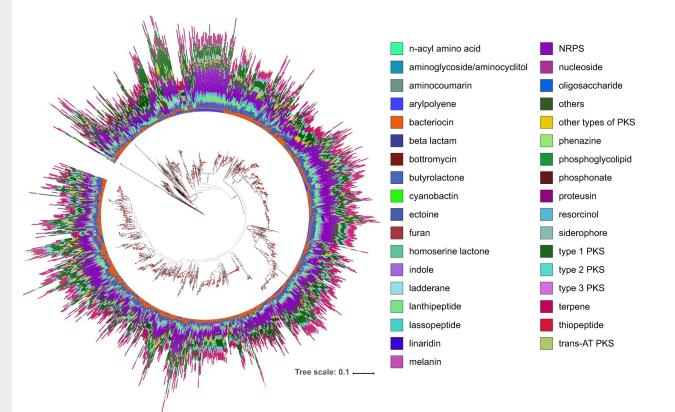
DAS TOOL FOR GENOME RESOLVED METAGENOMICS

QUALITY ASSESSMENT STANDARDS

Minimum Information about a Metagenome-Assembled Genome (MIMAG)

Criterion Description Finished (SAG/MAG) Assembly quality^a Single contiguous sequence without gaps or ambiguities with a consensus error rate equivalent to Q50 or better High-quality draft (SAG/MAG) Assembly quality^a Multiple fragments where gaps span repetitive regions. Presence of the 23S, 16S, and 5S rRNA genes and at least 18 tRNAs. Completion^b >90% <5% Contamination^c Medium-quality draft (SAG/MAG) Assembly quality^a Many fragments with little to no review of assembly other than reporting of standard assembly statistics. Completion^b ≥50% Contamination^c <10% Low-quality draft (SAG/MAG) Assembly quality^a Many fragments with little to no review of assembly other than reporting of standard assembly statistics. Completion^b <50% <10% Contamination^c

Table 1 Genome reporting standards for SAGs and MAGs


GUT MICROBIOME MULTI-OMICS

system. Understanding microbial signals could lead to new ways to tackle disease.

The gut microbiome influences health, notably by interacting with the immune

DATA INTEGRATION

Immune system Health Drugs Sample Host cell Microbial collection and community removal storage Metabolites DNA RNA Proteins 0000 Shotgun Meta-16s rRNA Meta-Metametabolomics gene profiling metagenomics transcriptomics proteomics Composition Microbial Microbial Functional and diversity pathways function activity 80 0 Data integration Functional Validation Targeted 4 screening in cells/mice modulators Computational prioritisation

https://www.nature.com/articles/d42473-020-00214-9

Belknap et al., 2020

SUMMARY

Amplicon data - 16S rRNA, 18S rRNA, ITS markers

> provides a snapshot of the taxonomic diversity

- > Inexpensive, can process a lot of samples cheaply
- > Works well with low biomass samples and samples with high amounts of host DNA
- > not good for strain level identification

> can be biased based on primer choice, sample preservation methods, and other technical artifacts

Shotgun metagenomic data

- > Can also generate taxonomic profiles (using multiple target genes)
- > can provide potential functional capacity of genome
- > can provide strain level taxonomy information
- > expensive, requires a lot of DNA compared to amplicon methods
- > Aren't great methods for samples with high host DNA content (like for example endosphere)

Which method do you think is best for your specific research question??